New Architectures for a New Biology

Martin M. Deneroff deneroff@deshaw.com

D. E. Shaw Research, LLC

Background (A Bit of Basic Biochemistry)

DNA Codes for Proteins

Source: Molecular Biology of the Cell, Garland Publishing, Inc., New York, 1994

The 20 Amino Acids

Polypeptide Chain

Source: www.yourgenome.org

Levels of Protein Structure

Source: Robert Melamede, U. Colorado

What We Know and What We Don't

- Decoded the genome
- Don't know most protein structures
 - _ Especially membrane proteins
- No detailed picture of what most proteins do
- Don't know how everything fits together into a working system

We Now Have The Parts List ...

SECTION 7 PA					
7.1 BOARD A-I					
REFERENCE	ARP PART NUMBER	ARP/MFG NUMBER	REFERENCE	ARP PART NUMBER	ARP/MFG NUMBE
A1, 2	5601801	A-2801-008A/SL 19988	Q3	5600201	A2803-003-1B
A3, 4	5601901	A-2801-009/SL19986	Q6,13	5600202	A2803-003-2B
Q6,8	1303901	IMF3958	CR1-3,5-12	1200301	1N4148
Q2,3	1301701	2N5172	CR4	1200102	1N34
Q9	5600401	A2802-014-1	C12,16	1101201	DM-15-681K
Q1,4,5	1302801	2N6076	C10,11	1100612	Tag-00-10/35-50/20
CR1-6	1200301	IN4148	R32,44	1000105	SA-21
P2	1001203	B2801-006-1B	P16	5700701	B2801-006-1D
P1	5701801	B-2801-010-1A	P5,6,7,10,11,	5700702	B2801-006-2B
Т3,Т4	1000903	U201R251B	P1,2,3,4,8,9,12,		
T1	1000904	R201R102B	13,14,15	5700703	B2801-006-3B
Т2	1000913	U201R103B	T1,4,7	1000909	U201R103B
C8	1100901	WCR1P47	T2,3,5,6	1000915	U201R104B
C2	1100702	150D406X9010B	S1-11	1902401	01-481-0006
C4,5	1100608	G-0-001-G-10-0	7.0 00400.04		
S1	1900801	02-481-0001	7.3 BOARD C-I		
S2	1902401	02-481-0006	REFERENCE	ARP PART NUMBER	ARP/MFG NUMBE
7.2 BOARD B-I			M1	4023	
REFERENCE	A B B B B B T AU IMPER		A1	5601901	A-2801-009-1
	ARP PART NUMBER	ARP/MFG NUMBER	A2	5601501	B4023-006-2B
A1,2, A3	5601801	A2801-008A	Q12	1304601	TZ81
	5601501	A4024-006-2B	Q2,3,4,6.8,		
Z1,2	5602001	A2803-002A	10,13,16,18	1301701	2N5172
Q1,9,10,16,17,18	1301701	2N5172	Q2,5,7,9,11,		
Q7,14	1302801	2N6076	14,15,17	1302801	2N6076
Q4/5,Q11/12	7502600	APL4027-008	CR1-22	1200301	1N4148
Q2,8,15	1302501	2N5461	C7,8	1100602	TAG-00-3.3/20-10/1

But We Don't Know What the Parts Look Like ...

Or How They Fit Together ...

Or How The Whole Machine Works

How Can We Get There?

Two major approaches:

- Experiments
 - _ Wet lab
 - _ Hard, since everything is so small
- Simulation
 - _ Simulate:
 - How proteins fold (structure, dynamics)
 - How proteins interact with
 - Other proteins
 - Nucleic acids
 - Drug molecules
 - _ Gold standard: Molecular dynamics (MD)

Divide time into discrete time steps

 $t \longrightarrow$

~1 fs time step

Iterate

... and iterate

... and iterate

Integrate Newton's laws of motion

Example of an MD Simulation

Main Problem With MD

Too slow!

Example I just showed:

- 2 ns simulated time
- 3.4 CPU-days to simulate

Thought Experiment

- What if MD were
 - _ Perfectly accurate?
 - _ Infinitely fast?
- Would be easy to perform arbitrary computational experiments
 - _ Determine structures by watching them form
 - _ Figure out what happens by watching it happen
 - _ Transform measurement into data mining

Two Distinct Problems

Problem 1: Simulate many short trajectories

Problem 2: Simulate one long trajectory

Simulating Many Short Trajectories

- Can answer surprising number of interesting questions
- Can be done using
 - _ Many slow computers
 - _ Distributed processing approach
 - _ Little inter-processor communication
- E.g., Pande's Folding at Home project

Simulating One Long Trajectory

- Harder problem
- Essential to elucidate many biologically interesting processes
- Requires a single machine with
 - Extremely high performance
 - _ Truly massive parallelism
 - _ Lots of inter-processor communication

DESRES Goal

- Single, millisecond-scale MD simulations (long trajectories)
 - Protein with 64K or more atoms
 - _ Explicit water molecules
- Why?
 - _ That's the time scale at which many biologically interesting things start to happen

Protein Folding

Image: Istvan Kolossvary & Annabel Todd, D. E. Shaw Research

Interactions Between Proteins

Image: Vijayakumar, et al., *J. Mol. Biol.* 278, 1015 (1998)

Binding of Drugs to their Molecular Targets

Mechanisms of Intracellular Machines

Image: H. Grubm_ller, in Attig, et al. (eds.), *Computational Soft Matter* (2004)

What Will It Take to Simulate a Millisecond?

- We need an enormous increase in speed
 - _ Current (single processor): ~ 100 ms / fs
 - _ Goal will require < 10 μ s / fs
- Required speedup:
 - > 10,000x faster than current single-processor
 - ~ 1.000x faster than current parallel implementations
- Can't accept > 10,000x the power (~5 Megawatts)!

Target Simulation Speed

3.4 days today (one processor)

~ 13 seconds on our machine (one segment)

Molecular Mechanics Force Field

Stretch Bend Bonded **Torsion Electrostatic** Non-Bonded Van der Waals

What Takes So Long?

- Inner loop of force field evaluation looks at all pairs of atoms (within distance R)
- On the order of 64K atoms in typical system
- Repeat ~10¹² times
- Current approaches too slow by several orders of magnitude
- What can be done?

Our Strategy

New architectures

- Design a specialized machine
- _ Enormously parallel architecture
- Based on special-purpose ASICs
- _ Dramatically faster for MD, but less flexible
- _ Projected completion: 2008

New algorithms

- _ Applicable to
 - Conventional clusters
 - Our own machine
- _ Scale to very large # of processing elements

Interdisciplinary Lab

Computational Chemists and Biologists

Computer Scientists and Applied Mathematicians

Computer Architects and Engineers

Alternative Machine Architectures

- Conventional cluster of commodity processors
- General-purpose scientific supercomputer
- Special-purpose molecular dynamics machine

Conventional Cluster of Commodity Processors

- Strengths:
 - _ Flexibility
 - _ Mass market economies of scale
- Limitations
 - _ Doesn' t exploit special features of the problem
 - _ Communication bottlenecks
 - Between processor and memory
 - Among processors
 - _ Insufficient arithmetic power

General-Purpose Scientific Supercomputer

- E.g., IBM *Blue Gene*
- More demanding goal than ours
 - _ General-purpose scientific supercomputing
 - _ Fast for wide range of applications
- Strengths:
 - _ Flexibility
 - _ Ease of programmability
- Limitations for MD simulations
 - _ Expensive
 - _ Still not fast enough for our purposes

Anton: DESRES' Special-Purpose MD Machine

Strengths:

- Several orders of magnitude faster for MD
- _ Excellent cost/performance characteristics

Limitations:

- Not designed for other scientific applications
 - They' d be difficult to program
 - · Still wouldn't be especially fast
- _ Limited flexibility

Anton System-Level Organization

- Multiple segments (probably 8 in first machine)
- 512 nodes (each consists of one ASIC plus DRAM) per segment
 - Organized in an 8 x 8 x 8 toroidal mesh
- Each ASIC equivalent performance to roughly 500 general purpose microprocessors
 - _ ASIC power similar to a single microprocessor

3D Torus Network

Why a 3D Torus?

- Topology reflects physical space being simulated:
 - _ Three-dimensional nearest neighbor connections
 - Periodic boundary conditions
- Bulk of communications is to near neighbors
 - No switching to reach immediate neighbors

Source of Speedup on Our Machine

- Judicious use of arithmetic specialization
 - _ Flexibility, programmability only where needed
 - _ Elsewhere, hardware tailored for speed
 - Tables and parameters, but not programmable
- Carefully choreographed communication
 - _ Data flows to just where it's needed
 - _ Almost never need to access off-chip memory

Two Subsystems on Each ASIC

- Programmable, general-purpose
- Efficient geometric operations
- Modest clock rate

- Pairwise point interactions
- Enormously parallel
- Aggressive clock rate

Where We Use Specialized Hardware

Specialized hardware (with tables, parameters) where:

Inner loop

Simple, regular algorithmic structure

Unlikely to change

Examples:

Electrostatic forces

Van der Waals interactions

Example: Particle Interaction Pipeline (one of 32)

Array of 32 Particle Interaction Pipelines

Advantages of Particle Interaction Pipelines

- Save area that would have been allocated to
 - _ Cache
 - _ Control logic
 - _ Wires
- Achieve extremely high arithmetic density
- Save time that would have been spent on
 - _ Cache misses,
 - _ Load/store instructions
 - _ Misc. data shuffling

Where We Use Flexible Hardware

- _ Use programmable hardware where:
 - Algorithm less regular
 - Smaller % of total computation
 - E.g., local interactions (fewer of them)
 - More likely to change

_ Examples:

- Bonded interactions
- Bond length constraints
- Experimentation with
 - New, short-range force field terms
 - Alternative integration techniques

Forms of Parallelism in Flexible Subsystem

- The Flexible Subsystem exploits three forms of parallelism:
 - _ Multi-core parallelism (4 Tensilicas, 8 Geometry Cores)
 - _ Instruction-level parallelism
 - _ SIMD parallelism _ calculate on 3D and 4D vectors as single operation

Overview of the Flexible Subsystem

Geometry Core (one of 8; 64 pipelined lanes/chip)

But Communication is Still a Bottleneck

- Scalability limited by inter-chip communication
- To execute a <u>single</u> millisecond-scale simulation,
 - Need a huge number of processing elements
 - Must dramatically reduce amount of data transferred between these processing elements
- Can't do this without fundamentally new algorithms:
 - A family of Neutral Territory (NT) methods that reduce pair interaction communication load significantly
 - A new variant of Ewald distant method, Gaussian Split Ewald (GSE) which simplifies calculation and communication for distant interactions
 - These are the subject of a different talk.

An Open Question That Keeps Us Awake at Night

Are Force Fields Accurate Enough?

- Nobody knows how accurate the force fields that everyone uses actually are
 - _ Can't simulate for long enough to know (until we use Anton for the first time!)
 - _ If problems surface, we should at least be able to
 - Figure out why
 - Take steps to fix them
- But we already know that fast, single MD simulations will prove sufficient to answer at least some major scientific questions

Example: Simulation of a Na+/H+ Antiporter

Cytoplasm

Periplasm

Our Functional Model of the Na+/H+ Antiporter

